气相色谱分离时,采用热导检测器时有进样信号,使用氢离子化火焰检测器时是否有进样信号?why?急用!

来源:学生作业帮助网 编辑:六六作业网 时间:2024/05/11 01:42:14
气相色谱分离时,采用热导检测器时有进样信号,使用氢离子化火焰检测器时是否有进样信号?why?急用!气相色谱分离时,采用热导检测器时有进样信号,使用氢离子化火焰检测器时是否有进样信号?why?急用!气相

气相色谱分离时,采用热导检测器时有进样信号,使用氢离子化火焰检测器时是否有进样信号?why?急用!
气相色谱分离时,采用热导检测器时有进样信号,使用氢离子化火焰检测器时是否有进样信号?why?
急用!

气相色谱分离时,采用热导检测器时有进样信号,使用氢离子化火焰检测器时是否有进样信号?why?急用!
不一定,因为他们采用的检测方式不一样,热导是利用的两种物质的导热率的差别来进行检测信号的,不管什么物质他们与载气或大或小导热系数有一定的差别,而氢离子焰则有选择性,物质不一定能被电离出氢离子.

不一定
因为两个检测器的原理不一样。
热导检测器原理:
基于不同组分与载气有不同的热导率的原理而工作的热传导检测器。敏感元件为热丝,如钨丝、铂丝、铼丝,并由热丝组成电桥。在通过恒定电流以后,钨丝温度升高,钨丝温度升高,其热量经四周的载气分子传递至池壁。当被测组分与载气一起进入热导池时,由于混合气的热导率与纯载气不同(通常是低于载气的热导率),钨丝传向池壁的热量也发生变化,致...

全部展开

不一定
因为两个检测器的原理不一样。
热导检测器原理:
基于不同组分与载气有不同的热导率的原理而工作的热传导检测器。敏感元件为热丝,如钨丝、铂丝、铼丝,并由热丝组成电桥。在通过恒定电流以后,钨丝温度升高,钨丝温度升高,其热量经四周的载气分子传递至池壁。当被测组分与载气一起进入热导池时,由于混合气的热导率与纯载气不同(通常是低于载气的热导率),钨丝传向池壁的热量也发生变化,致使钨丝温度发生改变,其电阻也随之改变,进而使电桥输出端产生不平衡电位而作为信号输出。热导检测器是气象色谱法中最早出现和应用最广的检测器。近年来,尽管在许多方面它已被更灵敏更专属性的各种检测器所取代,但是由于它具有结构简单,性能稳定,灵敏度适宜,线性范围宽,对各种能作色谱的物质都有响应,最适合作微量分析(ppm级)。在分析测试在中,热导检测器不仅用于分析有机污染物,而且用于分析一些用其他检测器无法检测的无机气体,如氢、氧、氮、一氧化碳、二氧化碳等。
二.(氢)火焰离子化检测器
火焰离子化检测器是根据气体的导电率是与该气体中所含带电离子的浓度呈正比这一事实而设计的。一般情况下,组分蒸汽不导电,但在能源作用下,组分蒸汽可被电离生成带电离子而导电。
1. 火焰离子化检测器的结构:该检测器主要是由离子室、离子头和气体供应三部分组成。结构示意图见下图。
图3 火焰离子化检测器
离子室是一金属圆筒,气体入口在离子室的底部,氢气和载气按一定的比例混合后,由喷嘴喷出,再与助燃气空气混合,点燃形成氢火焰。靠近火焰喷嘴处有一圆环状的发射极(通常是由铂丝作成),喷嘴的上方为一加有恒定电压(+300V)的
圆筒形收集极(不锈钢制成),形成静电场,从而使火焰中生成的带电离子能被对应的电极所吸引而产生电流。
2. 火焰离子化检测器的工作原理
由色谱柱流出的载气(样品)流经温度高达2100℃的氢火焰时,待测有机物组分在火焰中发生离子化作用,使两个电极之间出现一定量的正、负离子,在电场的作用下,正、负离子各被相应电极所收集。当载气中不含待测物时,火焰中离子很少,即基流很小,约10-14A。当待测有机物通过检测器时,火焰中电离的离子增多,电流增大(但很微弱10-8~10-12A)。需经高电阻(108~l011)后得到较大的电压信号,再由放大器放大,才能在记录仪上显示出足够大的色谱峰。该电流的大小,在一定范围内与单位时间内进入检测器的待测组分的质量成正比,所以火焰离子化检测器是质量型检测器。
火焰离子化检测器对电离势低于H2的有机物产生响应,而对无机物、久性气体和水基本上无响应,所以火焰离子化检测器只能分析有机物(含碳化合物),不适于分析惰性气体、空气、水、CO、CO2、CS2、NO、SO2及H2S等。

收起